SSD Update: this is the one session you MUST ATTEND at Percona MySQL in April

March 20, 2012

MySQL and SSD: usage and tuning

In this talk, Vadim Tkachenko (Percona CTO) will cover Solid State Drives internals and how they affect database performance.
IO level benchmarks for SATA (Intel 320 SSD) and PCI-e (FusionIO, Virident) cards
to show absolute performance and give an idea on performance per $.
And finally how you can use MySQL and Percona Server with SSD,
what tuning parameters are most important and what performance may expect in real
production usage.

Track:

Utilizing Hardware

Experience level:
 Beginner
REGISTER HERE:  http://www.percona.com/live/mysql-conference-2012/
Note from Steve:  This show is a MUST for anyone thinking about solid state memory extensions or SSDs.  Just take a look at the speakers, sponsors, and exhibitors!
Home

Review of Virident FlashMAX MLC cards (repost)

November 10, 2011

Percona has just published a new analysis of  Virident’s entry in the PCIe flash space — you can find the full review here:

Full Percona Review of Virident FlashMAX MLC

Highlights:  Review of Virident FlashMAX MLC cards

November 10, 2011 By 

I have been following Virident for a long time (e.g. http://www.mysqlperformanceblog.com/2010/06/15/virident-tachion-new-player-on-flash-pci-e-cards-market/). They have great PCIe Flash cards based on SLC NAND.
I always thought that Virident needed to come up with an MLC card, and I am happy to see they have finally done so.

At Virident’s request, I performed an evaluation of their MLC card to assess how it handles MySQL workload. As I am very satisfied with the results, I wish to share my findings in this post.

But first, I wish to offer an overview of the card.

Virident FlashMax Cards are available in 1TB and 1.4TB usable capacities (the models names are M1000 and M1400)

These specified sizes are already available for end users.
I evaluated M1400 (1.4TB size) model, which I will discuss:

Because Virident has competition in the SSD market, they have stated their goals to distinguish themselves from their competitors:

  • Stability of performance: That is to minimize variations in throughput
  • Better response times: This is very important for database performance and I appreciate that Virident has made this a priority.
  • Performance at full capacity: As we know, SSD-based cards have special characteristics; the throughput declines when space utilization increases. Virident’s design/programming minimizes this decline.
  • RAID5 on the card: The card comes with RAID5 support on the card to give better protection.

To deal with a throughput decline, all Flash cards have reserved space. The 1.4TB card, that I have, internally holds 2TB worth of space.

This additional space is used for two purposes:

      1. To amortize write-intensive workloads, by using additional space.
      2. To have replacements for failed MLC modules. When one MLC module fails, it is marked as unused, and gets replaced by one from the pool of reserved modules.

Internally, Virident uses 25nm Intel NAND Flash MLC modules, this is the same technology that Intel uses for the Intel SSD 320 cards. 25nm modules allow the user a greater capacity, Physically you can place
more GBs into a given area. However, the drawback is that 25nm has worse reading and writing latencies, compared to previous generations. However, I have yet to determine how this affects MySQL workloads.

Virident has provided the following price list:

  • M1000 (1000GB Usable) – $13,000
  • M1400 (1400GB Usable) – $18,200
  • This amounts to $13/GB

Second, it is important to compare the performance of Virident FlashMAX MLC with available competing solutions.
It is fair to say Fusion-io ioDrive Duo 1.28TB MLC is the most well-known and most advanced competitor in the market.
I had a chance to administer a head-to-head comparison of sysbench and tpcc-mysql workloads between FlashMAX 1.4TB and ioDrive Duo 1.28TB.

It is important to highlight that Fusion-io ioDrive Duo is based on 34nm NAND technology, which is a full generation behind the 25nm NAND. However at this point, I have no access to Fusion-io ioDrive2, which is based on 25nm NAND.
Another important factor is that ioDrive Duo is actually two cards visible in the OS, and the user needs to use a software RAID. For Virident all 1400GB shows up as one single drive so no software RAID is necessary.

To compare performances I ran sysbench oltp and tpcc-mysql benchmarks. I will present the results
for sysbench oltp (with full report available later) below, and the results for tpcc-mysql in a followup post.

For sysbench, I used our multi-tables sysbench implementation with 256 tables and 10,000,000 rows each. This is a total of around 630GB of data, which allows one to adequately fill both cards in comparison.

Some hardware used in benchmarks include:

  • Server: Cisco UCS C250, running Oracle Linux 6.1 and Percona Server 5.5.15
  • Client: HP ProLiant DL380 G6, sysbench v5

My conclusions are as follows:

  • It is great to see another player on MLC Flash cards market.
  • It is also great that Virident focuses on stability of performance for competitive advantage.
  • Beside stability, we also see better throughput in MySQL using the Virident FlashMAX card for every thread count. On 32-64 threads we have about a 35-40% advantage of using Virident FlashMAX.

DISCLOSURE: This review was done as part of our consulting practice for which we compensated by Virident. However, this review was written independently of Virident, and reflects our opinion of this product.


MySQL Conference Santa Clara This Week

April 12, 2010

 

I’ll be there Tuesday…ping me it you’re going.